Evidenzen fuer den Gott der Bibel

dieses Forum hat das Ziel, biblische, wissenschaftliche, und philosofische Argumente zu sammeln, die auf die glaubwuerdigkeit des Gottes der Bibel hinweisen


You are not connected. Please login or register

Metabolische Netzwerke deuten auf intelligentes Design

View previous topic View next topic Go down  Message [Page 1 of 1]

Metabolische Netzwerke deuten auf  intelligentes Design

http://elshaddai.thinksubject.com/t131-metabolischen-netzwerke-deuten-auf-intelligentes-design



Beobachtung: Die Existenz von Stoffwechselwegen ist von entscheidender Bedeutung für molekulare und zelluläre Funktionen, und lebensnotwendig für die Zelle. Metabolische Netzwerke kann man sich wie eine Leiterplatte eines Computers oder eine Schaltzentrale vorstellen. Obwohl bakterielle Genome sich in beträchtlichem Ausmaß in ihrer Größe und Gen-Repertoires unterscheiden, egal wie klein, müssen sie alle Informationen enthalten, um der Zelle zu ermöglichen, viele essentielle (Housekeeping) Funktionen auszuführen, die der Zelle die Fähigkeit der metabolischen Homöostase geben, zu reproduzieren, und sich an die Umwelt anzupassen. Das sind die drei wichtigsten Eigenschaften lebender Zellen . (Gil et al. 2004) In der Tat ist Metabolismus eines der konserviertesten Zellprozesse. Mit Daten aus vergleichender Genomik und groß Deletionsstudien, hat der wissenschaftliche Artikel "Strukturelle Analysen eines hypothetischen minimalen Stoffwechsels " 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2442391/#bib12

ein minimales Gen-Set bestehend aus 206 Protein-kodierenden Genen für eine hypothetische minimale Zelle vorgeschlagen. Das Papier enthält und nennt 50 Enzyme/Proteine, welche  ​​benötigt werden, um ein metabolisches Netzwerk von einem hypothetischen Minimalgenom für die hypothetische minimale Zelle zu erstellen. Die 50-Enzyme/Proteine ​​und das metabolische Netzwerk müssen vollständig sein, um einer Zelle zu ermöglichen,  die Grundfunktionen zu halten.

Hypothese (Vorhersage): Der Ursprung der biologischen der nicht reduzierbaren Stoffwechselwege, die auch Regulierung erfordern und die wie eine Kaskade aufgebaut sind, ähnlich wie bei elektronischen Leiterplatten, werden am besten durch die kreative Wirkung eines intelligenten Agenten erklärt

Experiment: Experimentelle Untersuchungen von metabolischen Netzwerken zeigen, dass diese voll von Knotenpunkten/Verzweigungen mit Enzymen/Proteinen sind, (die für ihre Synthese Informationen benötigen gespeichert im DNA) Hierarchische Strukturen sind notwendig, um die meisten Funktionen von metabolischen Netzwerken auszuführen (Ravasz et al, 2002). Es hat sich gezeigt, dass Stoffwechselprodukte nur hergestellt werden können, wenn Kohlenstoff, Stickstoff, Phosphor und Schwefel und die Grundbausteine, ​​durch diese Elemente erzeugt durch den zentralen Stoffwechsel, zur Verfügung stehen. Dies bedeutet, dass regulatorische Netzwerke metabolischer Aktivitäten auf die Verfügbarkeit dieser grundlegenden Ressourcen beruhen und von ihnen abhängig sind. So eine Stoffwechsel-Schaltung hängt von den Produkten ab, die von zentralen Stoffwechselwegen kommen, das eine vom anderen abhängig, wie in einer Kaskade. Außerdem ist es nennenswert, dass um den metabolischen Fluss zu regulieren, Rückkopplungsschleifen benötigt werden. Diese sind in einer funktionellen Weise miteinander verbunden, und für eine lebende Zelle notwendig. Die biologischen Stoffwechsel-Netzwerke sind exquisit integriert, so dass Veränderungen zwangsläufig zu beschädigter oder zerstörter Funkion führen Änderungen im Fluss erfordern oft Änderungen in den Aktivitäten mehrerer Enzyme in einer metabolischen Sequenz. Synthese eines Metaboliten erfordert typischerweise die Inbetriebnahme von vielen Wegen.

Schlussfolgerung: Unabhängig von seiner anfänglichen Komplexität, kann selbsterhaltendes leben auf Basis chemischer metabolischer Netzwerke nicht erzeugt werden ohne der Existenz eines Erbmechanismus, welcher für die Wartung, die Stabilität und die Diversifizierung ihrer Komponenten notwendig ist. Bei der Ermangelung würden Auto-trophische Reaktionsketten kommen und gehen, ohne dass es möglich sein würde, irgendwelche direkten Nachkommen zu generieren, um den Prozess wieder zu beleben. Leben, wie wir wissen, besteht sowohl aus Chemie und Informationen. Wenn es metabolische präbiotische Prozesse gab, um diese in komplexes Leben zu verwandeln wie wir es kennen, bräuchte es auch die Erschaffung eines genetischen replizierenden Mechanismus, (Ribas de Poupkna, Ph.D.)
Intelligente Agenten haben häufig Ziele vor Augen, und verwenden ein hohes Maß komplexer Informationen, um ein bestimmtes Ziel zu erreichen. Unserer Erfahrung nach stammen Systeme welche große Mengen an instruierender komplexer Informationen speichern durch Codes und Sprachen, wie Bücher, Morsecodes, Computercodes, Partituren, - immer von einer intelligenten Quelle. Ebenso Schaltungen oder Netzwerke von koordinierten Interaktion wie zum Beispiel von analogen elektronischen Geräten können immer zu einem intelligenten Erzeuger zurückgeführt werden. Der Betrieb der analogen elektronischen Vorrichtungen entspricht sehr eng dem Informationsfluss in chemischen Reaktionen von Stoffwechselwegen (McAdams und Shapiro, 1995). Eine vorgeschlagener Mechanismus muss in der Lage sein, de novo metabolische Netzwerke zu erschaffen, eine minimale Menge von 50 Enzymen und komplexen integrierten metabolischen Schaltungen, mit dem klaren Endziel vor Augen, Lebern zu erschaffen. Ein metabolisches Netzwerk, das nicht voll funktionsfähig ist, wird Leben nicht ermöglichen Wir wissen, in unserer Erfahrung, dass Intelligenz zur Erschaffung von Leiterplatten der Lage ist, wie diskrete elektronische Platinen, und ist die einzige bekannte Ursache komplexer Bauteile, wie Schaltungen, Kapazitoren, Kondensern etc, die man mit Enzymen vergleichen kann. Da die Evolution von voll funktionstüchtigen metabolischen Schaltungen abhängig ist, ist sie als möglicher Mechanismus ausgeschlossen. Da bleiben nur zwei Alternativen Zufall/Glück oder physische Notwendigkeit. Diese werden jedoch nie in der Lage sein, Leiterplatten und funktionelle aufeinander abgestimmte Enzyme herzustellen. Das wurde noch nie beobachtet. Und die Chance, dass dies durch Zufall passieren könnte, ist so groß, dass es im Bereich des unmöglichen liegt. Der Ursprung der metabolischen Netzwerke der ersten Zellen wird daher durch die Wirkung eines intelligenten Agenten am besten erklärt.

Instruierende komplexe kodierte Information in epigenetischen Systemen und Genen gespeichert, und nicht reduzierbar, voneinander abhängige molekulare Maschinen und Biosynthetische und Stoffwechselwege in biologischen Systemen weisen auf die Anforderung eines intelligenten Agenten, um ihre Erschaffung und Herkunft zu erklären.

Beobachtung: Intelligente Agenten können mit einem Endziel vor Augen, funktional komplexe mehrteilige Maschinen konstruieren, die einen Bauplan und ein Projekt erfordern , sowie ein hohes Maß an komplexer instruktiver kodierter Information (kiki). Unserer Erfahrung gemäß kann man den Ursprung von Systemen, die entweder große Mengen an kiki wie Codes und Sprachen a) verwenden oder b) speichern - immer auf einen intelligenten Ursprung zurückverfolgen .
Hypothese (Vorhersage): Natürliche Strukturen werden gefunden werden, welche in komplizierten Mustern und nicht reduzierbaren Strukturen angeordnet sind welche viele Teile enthalten, die eine bestimmte Funktion erfüllen - welche ein hohes maß von (kiki) und irreduzibler Komplexität beinhalten.
Experiment: Experimentelle Untersuchungen von DNA, epigenetischer Codes, biosynthetischer Wege und metabolischer Schaltungen zeigen, dass sie reiche kiki, sprach basierte Codes beinhalten und  auf Code/Plan basierende Strukturen. Biologen haben Mutationsempfindlichkeitstests an Proteinen durchgeführt und festgestellt, dass die Aminosäuresequenzen, um Proteinfunktion zu erhalten, ein hohes mass an kiki benoetigen, welches im gen gespeichert ist. Zusätzlich wurde herausgefunden, dass die Zelle verschiedene epigenetische Codes enthält, nämlich die Splicing-Codes, die Metabolic-Codes, Signal Transduktion Codes, Signalintegrations Codes, den Histon-Code, den Tubulin-Code, den Zucker-Code und den glycomic-Code. Darüber hinaus sind alle Art von irreduzibel komplexe molekulare Maschinen, Biosynthese und Stoffwechselwege gefunden wurden, die nicht ihre Grundfunktionen und Prozesse ohne eine minimale Anzahl von Teilen und Komponenten halten können Das beweist, diese biologischen Maschinen und Prozesswege mussten voll funktionsfähig entstehen, auf einmal. Eine schrittweise evolutionsartige Entwicklung ist nicht möglich. Darüber hinaus haben knock out Experimente aller Komponenten der Geißel gezeigt, dass diese per Definition nicht reduzierbar komplex ist.
Fazit: Es sei denn, jemand kann die Vorhersage falsifizieren, und auf eine nicht-intelligente Quelle für komplexe kodierte Informationen hinweisen, die hohe kiki in biochemischen Systemen erzeugen kann, und molekulare Systeme und biologische Prozesswege, die nicht reduzierbar und voneinander abhängig sind , ist ihre Herkunft am besten durch die Wirkung eines intelligenten Agenten erklärt.

Originaltext : http://reasonandscience.heavenforum.org/t2371-how-cellular-enzymatic-and-metabolic-networks-point-to-design



Last edited by ElShaddai888 on Wed Jul 27, 2016 4:58 am; edited 10 times in total

View user profile
How Cellular Enzymatic and Metabolic networks  point to design


The argument of a intelligent designer required to setup the Metabolic Networks for the origin of life. 

http://reasonandscience.heavenforum.org/t2371-how-cellular-enzymatic-and-metabolic-networks-point-to-design

Observation: The existence of metabolic pathways is crucial for molecular and cellular function.  Although bacterial genomes differ vastly in their sizes and gene repertoires, no matter how small, they must contain all the information to allow the cell to perform many essential (housekeeping) functions that give the cell the ability to maintain metabolic homeostasis, reproduce, and evolve, the three main properties of living cells. Gil et al. (2004)  In fact, metabolism is one of the most conserved cellular processes. By integrating data from comparative genomics and large-scale deletion studies, the paper "Structural analyses of a hypothetical minimal metabolism"   proposes a minimal gene set comprising 206 protein-coding genes for a hypothetical minimal cell. The paper lists 50 enzymes/proteins required to create a metabolic network implemented by a hypothetical minimal genome for the hypothetical minimal cell. The  50 enzymes/proteins , and the metabolic network, must be fully implemented to permit a cell to keep its basic functions.  
Hypothesis (Prediction): The origin of biological irreducible metabolic pathways which also require regulation and and which are structured like a cascade, similar to electronic circuit boards,  are best explained by the creative action of an intelligent agent.
Experiment: Experimental investigations of metabolic networks  indicate that they are  full of nodes with enzymes/proteins, that require for their synthesis information rich, language-based codes stored in DNA . Hierarchical structures have been proved to be best suited for capturing most of the features of metabolic networks (Ravasz et al, 2002). It has been found that metabolites can only be synthesized if carbon, nitrogen, phosphor, and sulfur and the basic building blocks generated from them in central metabolism are available. This implies that regulatory networks gear metabolic activities to the availability of these basic resources.  So one metabolic circuit depends on the product of other products, coming from other, central metabolic pathways, one depending from the other, like in a casacade.  Further noteworthy is that Feedback loops have been found to be required to regulate metabolic flux, and the activities of many or all of the enzymes in a pathway.  In many cases, metabolic pathways are highly branched, in which case it is often necessary to alter fluxes through part of the network while leaving them unaltered or decreasing them in other parts of the network (Curien et al., 2009). These are interconnected in a functional way, resulting in a living cell. The biological metabolic networks  are  exquisitely integrated, so the significant alterations in  inevitably damage or destroys the funcion. Changes in flux often require changes in the activities of multiple enzymes in a metabolic sequence. Synthesis of one metabolite typically requires the operation of many pathways.

Conclusion:   Regardless of its initial complexity, self-maintaining chemical-based metabolic life could not have emerged in the absence of a genetic replicating mechanism insuring the maintenance, stability, and diversification of its components. In the absence of any hereditary mechanisms, autotrophic reaction chains would have come and gone without leaving any direct descendants able to resurrect the process. Life as we know it consists of both chemistry and information.   If metabolic life ever did exist on the early Earth, to convert it to life as we know it would have required the emergence of some type of information system under conditions that are favorable for the survival and maintenance of genetic informational molecules. ( Ribas de Poupkna, Ph.D.)
  Intelligent agents have frequently end goals in mind, and use high levels of instructional complex information to met the goal. In our experience, systems storing large amounts of specified/instructional complex information through  codes and languages -- invariably originate from an intelligent source.  Likewise, circuits or networks of coordinated interaction as for example  of analog electronic devices can always be traced back to a intelligent causal agent. The operation of analog electronic devices maps very closely to the flow of information in chemical reactions of metabolic pathways (McAdams and Shapiro, 1995). A proposed mechanism to make metabolical networks  must be capable of construct de novo, not merely modifying, a minimal set of 50  enzymes, and complex integrated metabolic circuits with the end goal  to create life. A metabolic network that is not fully operational, will not permit life.  We know in our experience that intelligence is able to setup  circuit  boards, like discrete electronic boards, and is the  only known cause of irreducibly complex machines. Since evolution depends on metabolic circuits fully setup,  its excluded as possible mechanism. The only two alternatives, chance/luck or physical necessity have never been observed to be able to setup circuit boards and irreducible complex systems.  The origin of the basic metabolical network of the first cells is therefore best explained through the action of a intelligent agency.

1. High information content (or specified complexity), irreducible complexity, and the setup of exquisitely integrated circuits, which by significant alterations are  inevitably damaged or destroys the funcion,  constitute strong indicators or hallmarks of (past) intelligent design.
2.The high information content  and biological irreducible metabolic pathways which also require regulation and and structured in a cascade manner, similar to electronic circuit boards, utilizing proteins and enzymes  that manifest by themself irreducible complexity, constitute strong indicators or hallmarks of (past) creation through intelligent intervention,  and design.
3. Naturalistic mechanisms or undirected causes do not suffice to explain the origin of information (instructed complex information), irreducible complexity, and the setup of complex circuits with little tolerance of change.
4. Therefore, intelligent design constitutes the best explanations for the origin of information and irreducible complexity in metabolic biological circuits.


The existence of metabolic pathways is crucial for molecular and cellular function.   In fact, metabolism is one of the most conserved cellular processes; it is recognized that very little is known about how the chemistry of primitive enzymes arose (Perez-Jimenez et al, 2011) and which were the first enzymes appearing. Building a new living cell  requires not just new genes and proteins, but at least nine different metabolic networks which are essential, and irreducible In this paper, a minimum of 14 sets are mentioned : These are highly complex multibranched, noded anabolic, metabolic and catabolic systems, which are functionally critical, and  individually  not able to  turn a cell alive. Furthermore, metabolic networks support growth, the synthesis or turnover of storage compounds, or the accumulation of metabolites that have a role in coping with abiotic or biotic stress 4 Metabolism has been divided into discrete pathways, but we know now that it operates as a highly integrated network (Sweetlove et al., 2008). Metabolites are not synthesized in isolation from each other; rather, large sets of metabolites must be synthesized simultaneously. Hierarchical structures have been proved to be best suited for capturing most of the features of metabolic networks (Ravasz et al, 2002) Metabolites can only be synthesized if carbon, nitrogen, phosphor, and sulfur and the basic building blocks generated from them in central metabolism are available. This implies that regulatory networks gear metabolic activities to the availability of these basic resources.  So one metabolic circuit depends on the product of other products, coming from other, central metabolic pathways, one depending from the other, like in a casacade.  Further noteworthy is that Feedback loops are required to regulate metabolic flux, and the activities of many or all of the enzymes in a pathway.  In many cases, metabolic pathways are highly branched, in which case it is often necessary to alter fluxes through part of the network while leaving them unaltered or decreasing them in other parts of the network (Curien et al., 2009). One of the most basic principles of engineering is the principle of constraints. Engineers have long understood that the more functionally integrated a system is, the more difficult it is to change any part of it without damaging or destroying the system as a whole. The biological metabolic networks  are  exquisitely integrated, so the significant alterations in  inevitably damage or destroys the funcion. ( S.C.Meyer, Darwin's Doubt ) Changes in flux often require changes in the activities of multiple enzymes in a metabolic sequence. Synthesis of one metabolite typically requires the operation of many pathways. All of them have to be present in the first living cell,  correctly interconnected and noded to provide function, internal and external communication,  and the biosynthesis of various essential products and parts. These are circuits or networks of coordinated interaction, much like integrated circuits on a circuitboard. Metabolic networks work like electric circuits. The operation of analog electronic devices maps very closely to the flow of information in chemical reactions (McAdams and Shapiro, 1995). Life could not emerge without it. A proposed mechanism must be capable of constructing, not merely modifying, complex integrated metabolic circuits. The requirements for constructing the first living cells de novo cannot be done through evolution, since evolution depends on these basic initial networks,  fully operational. And since there is no function for a unfinished metabolic network, then how could it ever emerge ? The only two mechanisms that remain to explain its origin if intelligent design is excluded,  is chance/luck/self organisation, or physical necessity. We know of intelligence being able to construct electric circuits all the time, and even self replicating machines ( even if only experimentally , since extremely complex ). We do not know of lucky accidents with the same capacity, nor physical needs or physical/chemical laws. We can infer therefore confidently, that the origin of metabolic networks to create the first living cell was most probably designed.

To setup of a cell metabolic network, many different proteins/enzymes are required, correctly interconnected to provide function. Yet the individual enzymes or physical/chemical laws  do not contain by themself the information  of how to  connect and interwine in the correct order that result in a functional metabolic circuit.   Furthermore, the mechanism must be capable of construct from zero, not merely modifying, complex integrated circuits. The requirements for constructing the first living cells  cannot be explained through evolution, since evolution depends on these networks fully operational.  These are circuits or networks of coordinated interaction, much like integrated circuits on a circuitboard. Metabolic networks work like electric circuits. The operation of analog electronic devices maps very closely to the flow of information in chemical reactions. We know intelligence is able to setup circuit boards.  There is no function for a unfinished metabolic network, which makes  it extremely unlikely that new metabolic and catabolic networks would arise naturally, in  non-guided manner. 

The Implausibility of Metabolic Cycles on the Prebiotic Earth 3
Leslie E Orgel†
Although metabolism-first avoids the infeasibility of forming functional RNA by chance, "replication of compositional information is so inaccurate that fitter compositional genomes cannot be maintained by selection and, therefore, the system lacks evolvability (i.e., it cannot substantially depart from the asymptotic steady-state solution already built-in in the dynamical equations). We conclude that this fundamental limitation of ensemble replicators cautions against metabolism-first theories of the origin of life" [44]. Concerning the chemical cycles required, "These are chemically very difficult reactions ... One needs, therefore, to postulate highly specific catalysts for these reactions. It is likely that such catalysts could be constructed by a skilled synthetic chemist, but questionable that they could be found among naturally occurring minerals or prebiotic organic molecules. The lack of a supporting background in chemistry is even more evident in proposals that metabolic cycles can evolve to 'life-like' complexity. The most serious challenge to proponents of metabolic cycle theories—the problems presented by the lack of specificity of most non-enzymatic catalysts—has, in general, not been appreciated. If it has, it has been ignored. Theories of the origin of life based on metabolic cycles cannot be justified by the inadequacy of competing theories: they must stand on their own"

Hugh Ross , origin of life page 39
Metabolism first. 
Metabolism-first proponents maintain that mineral surfaces catalyzed the formation of a diverse collection of small molecules that, with time, evolved to form an interconnected series of chemical reactions. Once in place, these interrelated chemical reactions formed the basis for the cell’s metabolic systems.21 These chemical networks eventually became encapsulated to form protocells complete with a form of protometabolism. Some metabolism-first scenarios, like the iron-sulfur world, even suggest that minerals (for example, pyrite) became encapsulated along with the protometabolic networks and thereby served as life’s first catalysts. According to the metabolism-first idea, once protometabolic systems were established, they spawned self-replicating molecules.

The Genetic Code and the Origin of Life
The metabolism theory claims that life, at least in its beginnings, was nothing more than a continuous chain of mineral surface-associated self-sustaining chemical reactions with no requirement for genetic information. A primitive type of reductive citric acid cycle is often cited as a model. There is some experimental support for the hypothesis, although the conditions for the various individual reaction steps are very different,  it remains to be established if the conditions used in these laboratory experiments are geophysically plausible and are therefore relevant to the origin of life. Regardless of its initial complexity, self-maintaining chemical-based metabolic life could not have evolved in the absence of a genetic replicating mechanism insuring the maintenance, stability, and diversification of its components. In the absence of any hereditary mechanisms, autotrophic reaction chains would have come and gone without leaving any direct descendants able to resurrect the process. Life as we know it consists of both chemistry and information.  Life as we know it consists of both chemistry and information. If metabolic life ever did exist on the early Earth, to convert it to life as we know it would have required the emergence of some type of information system under conditions that are favorable for the survival and maintenance of genetic informational molecules.



At a construction site, builders will make use of many materials: lumber, wires, nails, drywall, piping, and windows. Yet building materials do not determine the floor plan of the house or the arrangement of houses in a neighborhood. Similarly, electronic circuits are composed of many components, such as resistors, capacitors, and transistors. But such lower-level components do not determine their own arrangement in an integrated circuit (see Fig. 14.2).



In particular, the cause must be capable of constructing, not merely modifying, complex integrated metabolic circuits. The requirements for constructing the first living cells de novo cannot be accommodated by microevolutionary or macroevolutionary theory, since evolution depends on these networks fully operational. And since there is no function for a unfinished metabolic network, then how would new metabolic and catabolic networks ever arise?

Integrated circuits in electronics are systems of individually functional components such as transistors, resistors, and capacitors that are connected together to perform an overarching function. Likewise, the functional enzymes and proteins of metabolic and anabolic networks, also form an integrated circuit, one that contributes to accomplishing the overall function of producing a working functional cell.

Understanding complex signaling networks through models and metaphors 1

The operation of analog electronic devices maps very closely to the flowof information in chemical reactions (McAdams and Shapiro, 1995). 

The buildup of charge, for example, is analogous to the accumulation of a particular molecule. Amplifiers, like enzymes, permit a small charge (or molecular concentration) to have a large effect on another. The identity of signals in an electronic circuit is maintained by distinct, insulated wires. In signaling circuits this identity is maintained by the fact that distinct molecules convey different signals. Even at a mathematical level, the equations describing equilibration of charge and amplifier function can faithfully mimic the equations describing chemical reactions.






 
Following shows the minimal metabolic network that was required in the first supposed last universal common ancestor.  


The Enzymatic and Metabolic Capabilities of Early Life 2

We reconstruct a representative metabolic network that may reflect the core metabolism of early life forms. Our results show that ten enzyme functions, four hydrolases, three transferases, one oxidoreductase, one lyase, and one ligase, are determined by metaconsensus to be present at least as late as the last universal common ancestor. Subnetworks within central metabolic processes related to sugar and starch metabolism, amino acid biosynthesis, phospholipid metabolism, and CoA biosynthesis, have high frequencies of these enzyme functions.


Link to the respective Keggs database

Sphingolipid metabolism
Pantothenate and CoA biosynthesis
Galactose metabolism
Drug metabolism - other enzymes
Starch and sucrose metabolism
fructose and mannose metabolism
pentose and glucuronate interconversions
Lipopolysaccaride biosynthesis
cyanoamino acid metabolism

Sphingolipid metabolism
The Last Universal Common Ancestor: emergence, constitution and genetic legacy of an elusive forerunner
We want to mention in passing that other lipids could have preceded glycerol lipids, perhaps at a very early time; Wachtershauser ([104], see also [48]) suggested that sphingolipids could have been the primeval ones. Sphingolipids are today represented in a few Bacteria, absent from Archaea (where they could have disappeared when the sn2,3 glycerol lipids became dominant) and ubiquitous in Eukarya.

#1 - http://religiopoliticaltalk.com/wp-content/uploads/2016/07/01-Sphingolipid.jpg

#2 - http://religiopoliticaltalk.com/wp-content/uploads/2016/07/02-Pantothenate.jpg

#3 - http://religiopoliticaltalk.com/wp-content/uploads/2016/07/03-Galactose.jpg

#4 - http://religiopoliticaltalk.com/wp-content/uploads/2016/07/04-Drug.jpg

#5 - http://religiopoliticaltalk.com/wp-content/uploads/2016/07/05-Starch.jpg

#6 - http://religiopoliticaltalk.com/wp-content/uploads/2016/07/06-Fructose.jpg

#7 - http://religiopoliticaltalk.com/wp-content/uploads/2016/07/07-Fructose.jpg

#8 - http://religiopoliticaltalk.com/wp-content/uploads/2016/07/08-Lipopolysaccharide.jpg

#9 - http://religiopoliticaltalk.com/wp-content/uploads/2016/07/010-Cyanoamino.jpg






















1. http://www.nada.kth.se/kurser/kth/2D1436/2005/lasmaterial/f8c/Bhalla.pdf
2. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0039912#pone.0039912-Srinivasan1
3. http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0060018
4. http://www.plantphysiol.org/content/152/2/428.full?sid=c0bd645e-881c-4bed-9f5b-0e4d595f140d

View user profile

View previous topic View next topic Back to top  Message [Page 1 of 1]

Permissions in this forum:
You cannot reply to topics in this forum

 
  •  

Locations of visitors to this page Forumotion.com | © PunBB | Free forum support | Contact | Report an abuse | Forumotion